Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Marco A. Brito-Arias, ${ }^{\text {a }}$ Efrén V. García-Báez, ${ }^{\text {a* }}$ Gustavo Valencia del Toro ${ }^{\text {a }}$ and Herbert Höpfl ${ }^{\text {b }}$

${ }^{\text {a }}$ Unidad Profesional Interdisciplinaria Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, México DF 07340, Mexico, and
${ }^{\text {b }}$ Centro de Investigaciónes Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico

Correspondence e-mail:
vgarcia@acei.upibi.ipn.mx

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.061$
$w R$ factor $=0.158$
Data-to-parameter ratio $=12.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-3-Nitrobenzaldehyde O -acetyloxime

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$, the 3-nitrobenzaldehyde oxime and acetyl group have a dihedral angle of 19.5 (4) ${ }^{\circ}$. The acetyl carbonyl and 3-nitrobenzaldehyde oxime groups both adopt a trans configuration (E). In the crystal structure, molecules are linked by a series of weak intermolecular C$\mathrm{H} \cdots \mathrm{O}$ interactions, forming a sheet-like structure parallel to the (303) plane.

Comment

The molecular structure of the title compound, (I), and the atom-labelling scheme are illustrated in Fig. 1. Selected bond lengths and angles are given in Table 1. The $\mathrm{O} 9-\mathrm{N} 8$ bond length of 1.429 (3) \AA is not significantly different from the $\mathrm{N}-$ O acetyl bond length found in (E)-O-palmitoyl phenyl 2pyridyl ketone oxime (1.439 Å; Taga \& Miyasaka, 1987). The title compound exhibits a somewhat shortened N8-C7 bond [1.256 (3) A], characteristic of an oxime group ($1.273 \AA$; Taga \& Miyasaka, 1987). The acetyloxime group is almost planar [the maximum deviation from the calculated mean plane is 0.071 (2) \AA for atom N8]. The dihedral angle between the 3nitrobenzaldehyde oxime and acetyl groups is $19.5(4)^{\circ}$. The acetyl carbonyl and 3-nitrobenzaldehyde oxime groups both adopt a trans configuration (E) [torsion angle $\mathrm{O} 9-\mathrm{N} 8-\mathrm{C} 7-$ $\left.\mathrm{C} 1=-176.6(2)^{\circ}\right]$ (see Fig. 1).

(I)

In the crystal structure, molecules of (I) are connected by a series of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts that can be considered as weak hydrogen bonds (Table 2), since all contacts have $\mathrm{H} \cdots \mathrm{O}$ values less than $2.6 \AA$. The molecules lie approximately in the (303) plane, thus forming a two-dimensional polymeric structure, as shown in Fig. 2.

Experimental

A solution of 3-nitrobenzaldehyde oxime ($246 \mathrm{mg}, 1.46 \mathrm{mmol}$) in acetic anhydride (2 ml) was refluxed for 2 h . Excess acetic anhydride was removed under vacuum, affording 261 mg (85% yield) of (I). Colourless crystals were obtained by slow evaporation of an acetic anhydride solution. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1620(\mathrm{C}=\mathrm{N}), 1699(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($300.08 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): $8.5(s, 1 \mathrm{H}), 8.4(s, 1 \mathrm{H}), 8.2(s$, $1 \mathrm{H}), 8.1(d, 1 \mathrm{H}), 7.2(t, 1 \mathrm{H}), 2.2(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): $168.4,153.9,148.7,137.9,132.2,130.3,127.8,123.3,19.6$.

Received 7 July 2004 Accepted 27 July 2004 Online 31 July 2004

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=208.17$
Monoclinic, $P 2_{1} / c$
$a=8.3129(11) \AA$
$b=11.2119(15) \AA$
$c=10.2947(14) \AA$
$\beta=92.769(2)^{\circ}$
$V=958.4(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART area-detector
diffractometer
φ and ω scans
Absorption correction: none
9042 measured reflections
1688 independent reflections
$D_{x}=1.443 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=208.17$
Monoclinic, $P 2_{1} / c$
$a=8.3129$ (11) \AA
$=11.2119(15) \mathrm{A}$
$\beta=92.769(2)^{\circ}$
$V=958.4(2) \mathrm{A}^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 600
reflections
$\theta=20.0-25.0^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.42 \times 0.40 \times 0.36 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.158$
$S=1.12$
1688 reflections
136 parameters
H -atom parameters constrained

Figure 1
The molecular structure of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2
The crystal packing of (I), showing the formation of the two-dimensional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded polymer in the (303) plane. Hydrogen bonds are shown as dashed lines.

This work was supported by CGPI-IPN (Coordinación General de Posgrado e Investigación del Instituto Politécnico Nacional).

References

Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Taga, T. \& Miyasaka, T. (1987). Acta Cryst. C43, 748-750.

